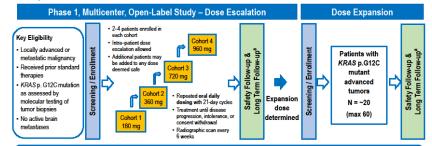
Poster presented at the American Society of Clinical Oncology (ASCO), 2020

Fakih MG, et al.

CodeBreaK 100: Activity of AMG 510, a novel small molecule inhibitor of KRAS^{G12C}, in patients with advanced colorectal cancer

CodeBreak 100: Activity of AMG 510, a Novel Small Molecule Inhibitor of KRAS^{G12C}, in Patients With Advanced Colorectal Cancer

Marwan G. Fakih, 1 Jayesh Desai, 2 Yasutoshi Kuboki, 3 John H. Strickler, 4 Timothy J. Price, 5 Gregory A. Durm, 6 Gerald S. Falchook, 7 Crystal S. Denlinger, 8 John C. Krauss, 9 Geoffrey I. Shapiro, 10 Tae Won Kim, 11 Keunchil Park, 12 Andrew L. Coveler, 13
Pamela N. Munster, 14 Bob T. Li, 15 June Kim, 16 Haby Henary, 16 Gataree Ngarmchamnanrith, 16 David S. Hong 17


Department of Medical Oncology and Experimental Therapeutics, Oily of Hope Comprehensive Cancer Center, USA, "Royal Melibourne Hospital/Peter MacCallum Cancer Centre Victoria, USA, Victoria, "Department of Medical Centre Durals Assistance of Medical Centre Durals (Assistance Of Medical Centre Durals (Assis

BACKGROUND

- Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are the most prominent oncogenic driver mutations in cancer; however, no agent directly targeting mutant KRAS has been clinically approved¹
- KRAS p.G12C mutation occurs in ~3% of colorectal cancer (CRC) and is often associated with poor prognosis²⁴
- For patients with previously treated CRC receiving standard therapies, median PFS was ~2 months with the response rate of less than 2%56
- Previously, AMG 510 (proposed INN sotorasib), a novel KRAS^{G12C} inhibitor, demonstrated a favorable toxicity profile and preliminary efficacy
 in patients with solid tumors harboring KRAS p.G12C; this analysis reports updated data in patients with CRC (NCT03600883)⁷

METHODS

Study Schema

Primary endpoints: dose limiting toxicities (DLTs), safety

Key secondary endpoints: PK, objective response rate, duration of response, disease control rate, PFS, duration of stable disease

nt-related TEAEs

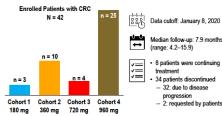
TEAEs: diarrhea and anemia,

occurring in 1 patient each

8 (19.0) 4 (9.5)

2 (4.8)

2 (4.8)


2 (4.8)

2 (4.8)

*30 (+7) days after end of treatment for safety follow-up: every 12 weeks for long term follow-up: PK: pharmacokinetics: PFS: progression-free survival

RESULTS

Patients

Patient Incidence of Adverse Events

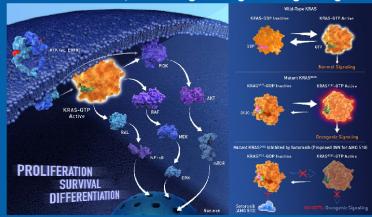
	Treatment- Emergent AEs (TEAEs) N = 42, n (%)	Treatment- Related AEs N = 42, n (%)
ny grade	38 (90.5)	20 (47.6)
Grade ≥ 2	29 (69.0)	9 (21.4)
irade≥3	13 (31.0)	2 (4.8)
rade ≥ 4	3 (7.1)	0 (0.0)
lose limiting toxicities	0 (0.0)	0 (0.0)
erious AEs	10 (23.8)	0 (0.0)
atal AEs	3 (7.1)	0 (0.0)
Es leading to treatment	2 (4.8)	0 (0.0)

AE: adverse event.

Target dose for expansion & phase 2: 960 mg QD

Baseline Characteristics

Baseline Characteristics	N = 42
Median age (range) – year	57.5 (33-82)
Female - n (%)	21 (50)
ECOG performance at baseline – n (%) 0 1	17 (40.5) 25 (59.5)
Prior lines of systemic anticancer therapy – n (%) 1 2 3 3 > 3	2 (4.8) 11 (26.2) 10 (23.8) 19 (45.2)
Number of prior lines of systemic anticancer therapy – median (range)	3 (1–4)


Tumor Response

Efficacy outcomes	All dose levels N = 42 n (%)	960 mg N = 25 n (%)
Best overall response		
Confirmed partial response - n (%)	3 (7.1)	3 (12.0)
Stable disease - n (%)	29 (69.0)	17 (68.0)
Progressive disease - n (%)	9 (21.4)	4 (16.0)
Not done - n (%)*	1 (2.4)	1 (4.0)
Objective response rate - %	7.1	12.0
(95% CI)	(1.50, 19.48)	(2.55, 31,22)
Disease control rate - %	76.2	80.0
(95% CI)	(60.55, 87.95)	(59.30, 93.17)
Duration of response for 3 responders – months	1.4+, 4.2+, 4.3+	1.4+, 4.2+, 4.3+
Duration of stable disease - months Median (min. max)	4.2 (2.5+, 11.0)	4.2 (2.6, 5.7+)

Three of 42 patients (7.1%) with heavily pretreated KRAS p.G12C mutant metastatic CRC had durable partial responses to sotorasib (AMG 510)

- In addition to the 3 responders, 29 patients achieved disease control, resulting in a disease control rate of 76.2% and a median PFS of 4.0 months (range: 0.7–11.0)
- Sotorasib (AMG 510) is well tolerated with mild treatmentrelated toxicities, consistent with previous results
- Phase 2 part of CodeBreak 100 is ongoing (NCT03600883)

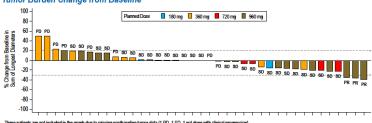
Sotorasib (AMG 510) Locks KRAS^{G12C} in the Inactive State, Inhibiting Oncogenic Signaling

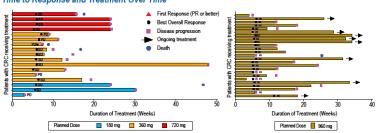

- This study is funded by Amgen Inc.
- Yang Li PhD (Amgen Inc.) provided medical writing assistance
- Refer to the QR code for the poster file and full author disclosures

rotimes Conice of this poets obtained through Chief Department (DD) Code was for passenal uponed and may not be resembled without parmission from

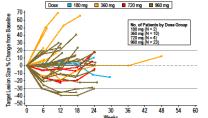
Contact information: Dr. Marwan G. Fakih, email: mfakih@coh.org

RESULTS (Continued)




Tumor Burden Change from Baseline

R 0.50


Number at risl

Time to Response and Treatment Over Time

Tumor Burden Change From Baseline Over Time

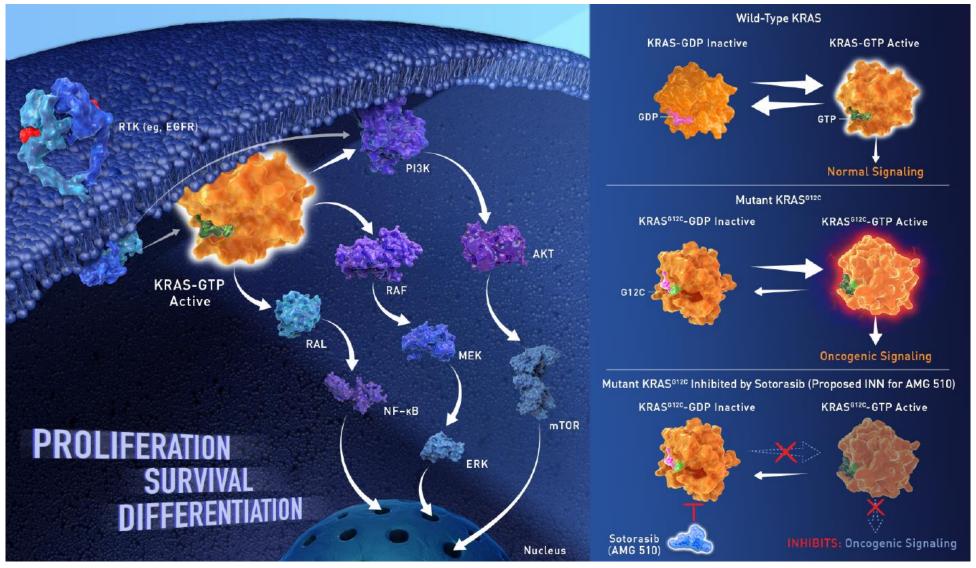
REFERENCES

- Cox AD, Fesik SW, Kimmelman AC, et al. Nat Rev Drug Discov. 2016 Nov;13(11):828-851
- Modest DP, Brodowicz T, Stintzing S, et al. Oncology 2012;83:241-247
 Neumann J, Zeindl-Eberhart E, Kirchner T, et al. Pathol Res Pract. 2009;205:421:858.862
- Jones RP, Sutton PA, Evans JP, et al. Br J Cancer 2017;116:923-92
 Mayor R I. Van Cuttern E. Falcone A et al. N. Engl. I Med.
- Mayer RJ, Van Cutsem E, Falcone A, et al. N Engl J Med 2015;372:1909-19.
- Grothey A, Van Cutsem E, Sobrero A, et al. Lancet 2013;381:303-12
 Govindan R, Fakih MG, Price TJ, et al. Annals of Oncology (2019) 30 (suppl 5): v159-v193.

CodeBreaK 100: activity of AMG 510, a novel small molecule inhibitor of KRAS^{G12C}, in patients with advanced colorectal cancer

Marwan G. Fakih, ¹ Jayesh Desai, ² Yasutoshi Kuboki, ³ John H. Strickler, ⁴ Timothy J. Price, ⁵ Gregory A. Durm, ⁶ Gerald S. Falchook, ⁷ Crystal S. Denlinger, ⁸ John C. Krauss, ⁹ Geoffrey I. Shapiro, ¹⁰ Tae Won Kim, ¹¹ Keunchil Park, ¹² Andrew L. Coveler, ¹³ Pamela N. Munster, ¹⁴ Bob T. Li, ¹⁵ June Kim, ¹⁶ Haby Henary, ¹⁶ Gataree Ngarmchamnanrith, ¹⁶ David S. Hong ¹⁷

¹Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California, USA; ²Royal Melbourne Hospital/Peter MacCallum Cancer Centre, Victoria, VIC, Australia; ³Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan; ⁴Duke University Medical Center, Durham, North Carolina, USA; ⁵The Queen Elizabeth Hospital and University of Adelaide, Woodville South, Australia; ⁶Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA; ⁷Sarah Cannon Research Institute at HealthONE, Denver, Colorado, USA; ⁸Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; ⁹University of Michigan, Ann Arbor, Michigan, USA; ¹⁰Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; ¹¹Department of Oncology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, South Korea; ¹²Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ¹³Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington, USA; ¹⁴Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA; ¹⁵Memorial Sloan Kettering Cancer, Center, New York, New York, USA; ¹⁶Amgen Inc. Thousand Oaks, California, USA; ¹⁷Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

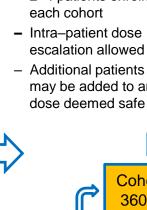

Background

- Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are the most prominent oncogenic driver mutations in cancer; however, no agent directly targeting mutant KRAS has been clinically approved¹
- KRAS p.G12C mutation occurs in ~3% of colorectal cancer (CRC) and is often associated with poor prognosis²⁻⁴
- For patients with previously treated CRC receiving standard therapies, median PFS was ~2 months with the response rate of less than 2%^{5,6}
- Previously, AMG 510 (proposed INN sotorasib), a novel KRAS^{G12C} inhibitor, demonstrated a
 favorable toxicity profile and preliminary efficacy in patients with solid tumors harboring KRAS
 p.G12C; this analysis reports updated data in patients with CRC (NCT03600883)⁷

INN: international nonproprietary name

^{1.} Cox AD, et al. Nat Rev Drug Discov. 2014;13:828-851. 2. Modest DP, et al. Oncology. 2012;83:241-247. 3. Neumann J, et al. Pathol Res Pract. 2009;205:858-862. 4. Jones RP, et al. Br J Cancer. 2017;116:923-929. 5. Mayer RJ, et al. N Engl J Med. 2015;372:1909-1919. 6. Grothey A, et al. Lancet. 2013;381:303-312. 7. Govindan R, et al. Ann Oncol. 2019;30:v159-v193.

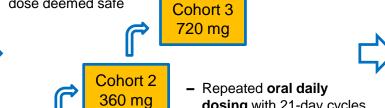
Sotorasib (AMG 510) locks KRAS^{G12C} in the inactive state, inhibiting oncogenic signaling


Methods

Phase 1, Multicenter, Open-Label Study – Dose Escalation

Dose Expansion

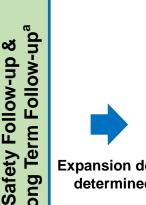
Key Eligibility


- Locally advanced or metastatic malignancy
- Received prior standard therapies
- KRAS G12C mutation as assessed by local molecular testing of tumor biopsies
- No active brain metastases

Cohort 1

180 mg

- 2-4 patients enrolled in
- escalation allowed
- may be added to any dose deemed safe



dosing with 21-day cycles

Cohort 4

960 mg

- Treatment until disease progression, intolerance, or consent withdrawal
- Radiographic scan every 6 weeks

ong

/ Enrollment

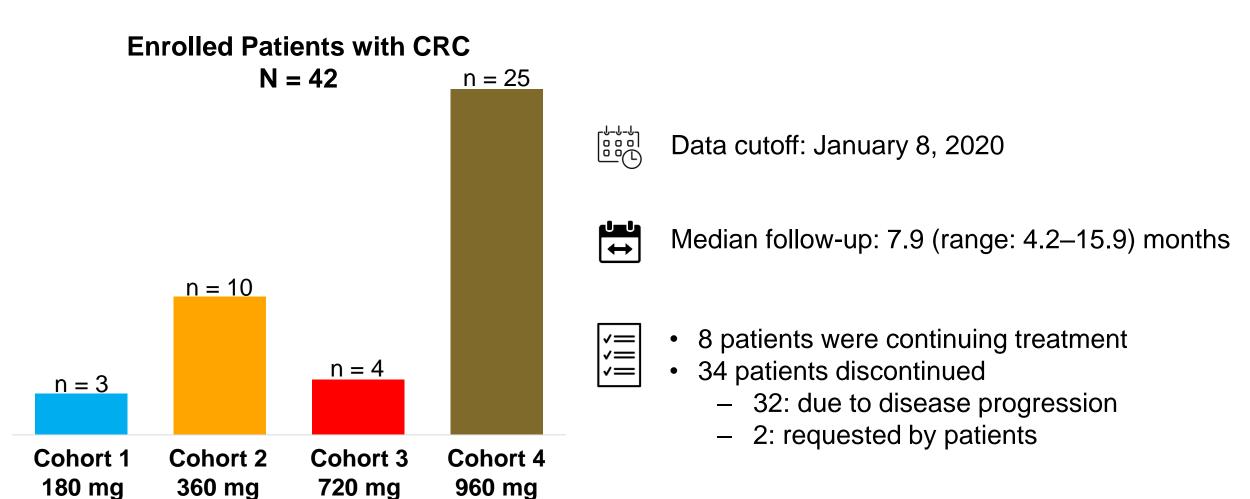
Screening

(max 60)

Primary endpoints: dose limiting toxicities (DLTs), safety

Screening / Enrollment

Key secondary endpoints: PK, objective response rate, duration of response, disease control rate, PFS, duration of stable disease


^a30 (+7) days after end of treatment for safety follow-up; every 12 weeks for long term follow-up. PK: pharmacokinetics; PFS: progression-free survival.

Term Follow-up^a

Safety Follow-up &

Results (1 of 10)

Patients

Results (2 of 10)

Baseline Characteristics

Baseline characteristics	N = 42
Median age – year (range)	57.5 (33–82)
Female – n (%)	21 (50)
ECOG performance status at baseline – n (%) 0 1	17 (40.5) 25 (59.5)
Prior lines of systemic anticancer therapy – n (%) 1 2 3 > 3	2 (4.8) 11 (26.2) 10 (23.8) 19 (45.2)
Number of prior lines of systemic anticancer therapy – median (range)	3 (1–4)

ECOG: Eastern Cooperative Oncology Group.

Results (3 of 10)

Patient Incidence of Adverse Events

	Treatment- Emergent AEs (TEAEs) N = 42, n (%)	Treatment-related TEAEs N = 42, n (%)
Any grade Grade ≥ 2 Grade ≥ 3 Grade ≥ 4	38 (90.5) 29 (69.0) 13 (31.0) 3 (7.1)	20 (47.6) 9 (21.4) 2 (4.8) 0 (0.0)
Dose-limiting toxicities	0 (0.0)	0 (0.0)
Serious AEs	10 (23.8)	0 (0.0)
Fatal AEs	3 (7.1)	0 (0.0)
AEs leading to treatment discontinuation	2 (4.8)	0 (0.0)

Treatment-related TEAEs of any grade occurring in > 1 patient	N = 42, n (%)
Diarrhea	8 (19.0)
Fatigue	4 (9.5)
Nausea	2 (4.8)
Blood creatine phosphokinase increase	2 (4.8)
Anemia	2 (4.8)
Vomiting	2 (4.8)

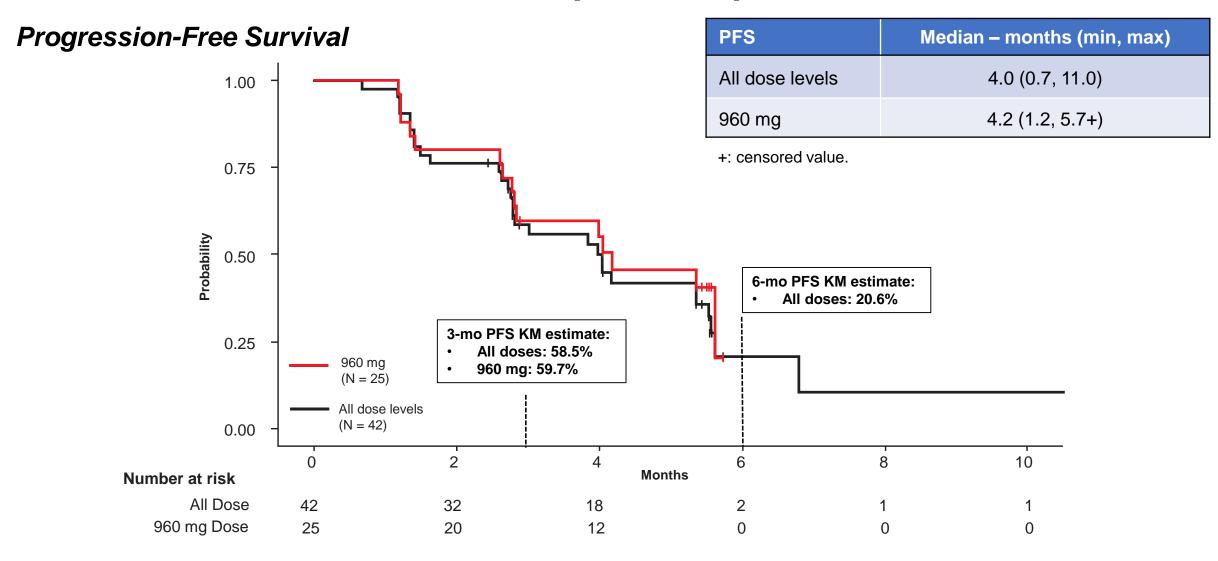
Grade 3 treatment-related TEAEs: diarrhea and anemia, occurring in 1 patient each

AE: adverse event

Target dose for expansion: 960 mg daily.

Results (4 of 10)

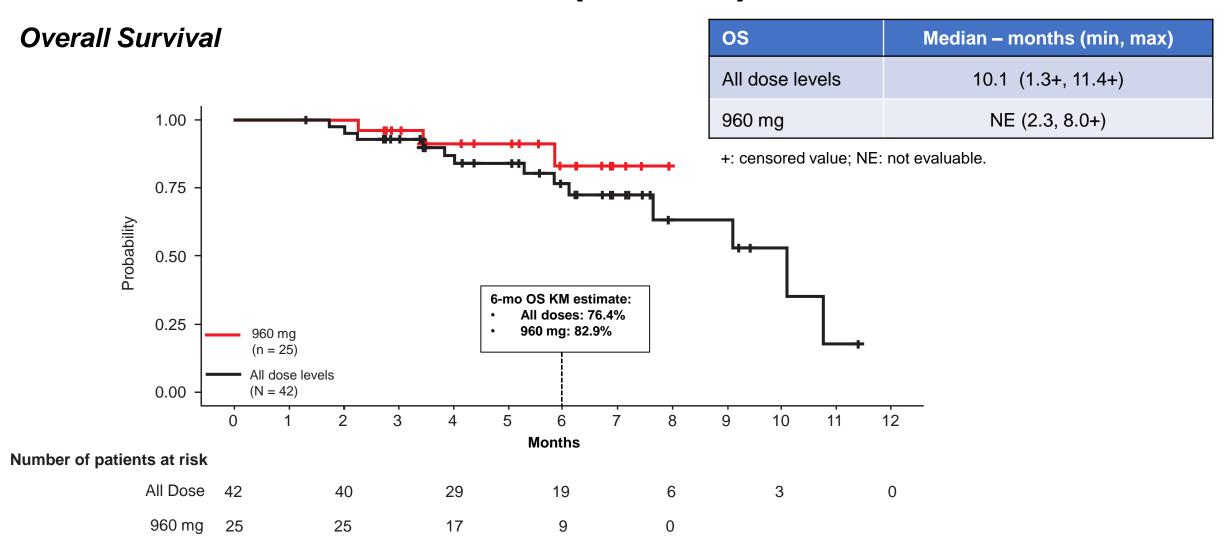
Tumor Response


Efficacy outcomes	All dose levels N = 42, n (%)	960 mg N = 25, n (%)
Best overall response Confirmed partial response – n (%) Stable disease – n (%) Progressive disease – n (%) Not done – n (%) ^a	3 (7.1) 29 (69.0) 9 (21.4) 1 (2.4)	3 (12.0) 17 (68.0) 4 (16.0) 1 (4.0)
Objective response rate – % (95% CI)	7.1 (1.50, 19.48)	12.0 (2.55, 31.22)
Disease control rate – % (95% CI)	76.2 (60.55, 87.95)	80.0 (59.30, 93.17)
Duration of response for 3 responders – months	1.4+, 4.2+, 4.3+	1.4+, 4.2+, 4.3+
Median duration of stable disease – months (min, max)	4.2 (2.5+, 11.0)	4.2 (2.6, 5.7+)

^aPatient had clinical progression with no postbaseline measurement.

<u>Title Background Mechanism of Action Methods Results Conclusions Acknowledgements</u>

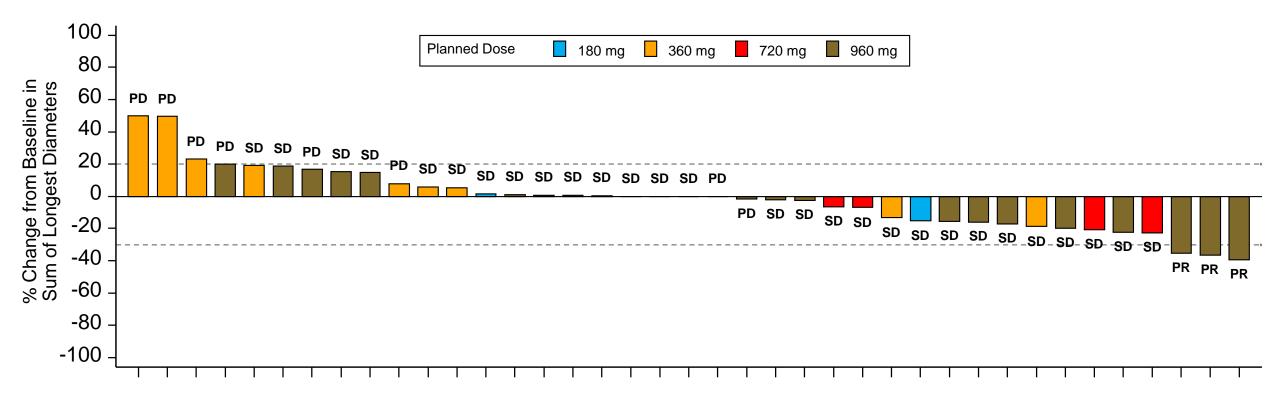
^{+:} censored value.


Results (5 of 10)

Title Background Mechanism of Action Methods Results Conclusions Acknowledgements

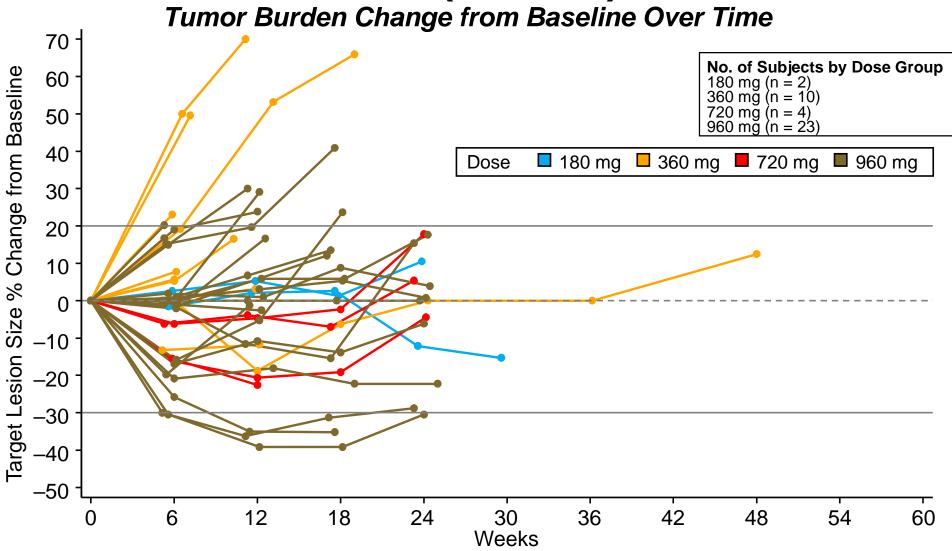
11

Results (6 of 10)



Title Background Mechanism of Action Methods Results Conclusions Acknowledgements

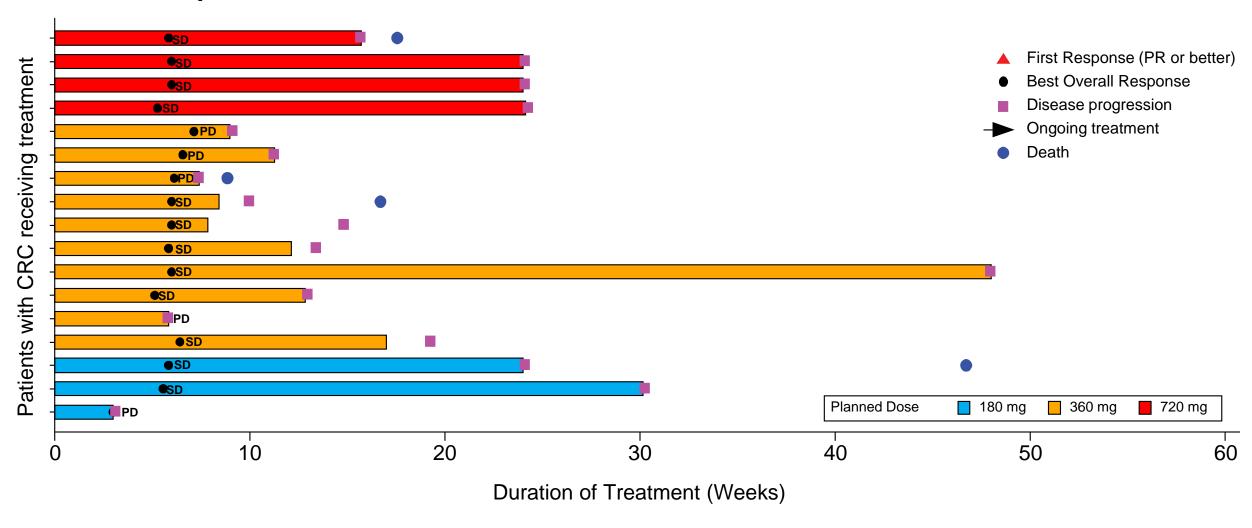
12


Results (7 of 10)

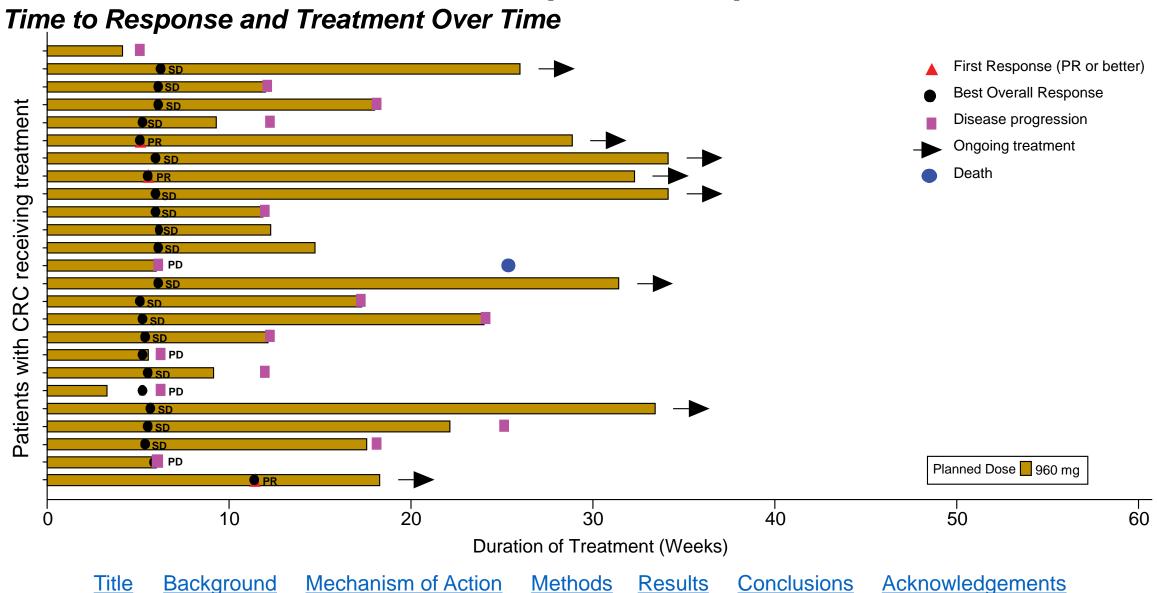
Tumor Burden Change from Baseline

Three patients are not included in the graph due to missing postbaseline tumor data (1 PD, 1 SD, 1 not done with clinical progression)

Results (8 of 10)


Three patients are not included in the graph due to missing postbaseline tumor data (1 PD, 1 SD, 1 not done with clinical progression)

<u>Background</u> <u>Mechanism of Action</u> <u>Methods</u> <u>Results</u> <u>Conclusions</u> <u>Acknowledgements</u>


Title

Results (9 of 10)

Time to Response and Treatment Over Time

Results (10 of 10)

Conclusions

- Three of 42 patients (7.1%) with heavily pretreated *KRAS p.G12C* mutant metastatic CRC had confirmed durable partial responses to sotorasib (AMG 510)
- In addition to the 3 responders, 29 patients achieved disease control, resulting in a disease control rate of 76.2% and a median PFS of 4.0 months (range: 0.7–11.0)
- Sotorasib (AMG 510) is well tolerated with mild treatment-related toxicities, consistent with previous results
- Phase 2 part of CodeBreaK 100 is ongoing (NCT03600883)

Acknowledgments

This study is funded by Amgen Inc. (ClinicalTrials.gov identifier: NCT03600883)

Yang Li, PhD (Amgen Inc.) provided medical writing assistance